Consider a simple case of a point source radiating electromagnetic waves in all directions (Figure 1-7, left). The received signal strength decreases exponentially with the sender-receiver distance. As with any other communication medium, the wireless channel is subject to thermal noise, which distorts the signal randomly according to a Gaussian distribution of noise amplitudes. As the distance between a transmitter and receiver increases, the received signal strength decreases to levels close to the background noise floor. At a certain distance from the sender, the signal strengths will become so weak that the receiver will not be able to discern reliably signal from noise. This distance, known as transmission range, is decided arbitrarily, depending on what is considered acceptable bit error rate. For example, we can define the transmission range as the sender-receiver distance for which the packet error rate is less than 10 %.
In addition to thermal noise, the received signal may be distorted by parallel transmissions from other sources (Figure 1-7, right). This phenomenon is known as interference. Because this normally happens only when both sources are trying to transmit data (unknowingly of each other’s parallel transmissions), this scenario is called packet collision. A key observation is that collisions occur at the receiver—the sender is not disturbed by concurrent transmissions, but receiver cannot correctly decode sender’s message if it is combined with an interfering signal. If the source and receiver nodes are far away from the interfering source, the interference effect at the receiver will be a slight increase in the error rate. If the increased error rate is negligible, the source and receiver will be able to carry out their communication despite the interference. Notice, however, that the interference of simultaneously transmitting sources never disappears—it only is reduced exponentially with an increasing mutual distance (Figure 1-8). The minimum distance (relative to the receiver) at which interferer’s effect can be considered negligible is called interference range. In Figure 1-8, node D is within the interference range of receiver B. Nodes C and E are outside the interference range. However, although outside the interference range defined for a single interferer, if nodes C and E are transmitting simultaneously their combined interference at B may be sufficiently high to cause as great or greater number of errors as a single interferer within the interference range.